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This is the final project for CMPE121/L, Microprocessor System Design. The challenge is 

to create a fully functioning and feature rich oscilloscope and logic analyzer. A PSoC-5, 

Raspberry Pi and various computer peripherals will allow for this all to happen. This lab 

combined many of the skills learned throughout the first 5 lab exercises as well as new skills 

that needed to be learned for this lab. Thus, both hardware and software methodology were 

inspired by those past labs as well as examples given to the class by Professor Varma.  

Part 1: Oscilloscope 

This oscilloscope has six main features. It can display two separately controlled 

waveforms. These waveforms can run in either free or trigger mode. If trigger mode is selected 

the trigger can be configured to either channel as well as a positive or negative trigger. The 

scaling of these waves can happen in both the x and y direction independently. These waves 

can also be moved up and down on the display independently with the use of two 

potentiometers (one for each wave).  
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The features of the oscilloscope are as follows. The oscilloscope is designed to be 

configurable in order to display a variety of different waveforms. The oscilloscope is configured 

before the program is run using various commands in the command line. The x and y scale are 

controlled by the commands -x and -y respectively. By default, both scales are set to 1000 

(1ms/ division for the x scale and 1V/division for the y scale). The y scale can have a value of 

100, 500, 1000, 2000 and 2500, while the x scale can have values of 100, 500, 1000, 2000, 5000, 

10000, 50000 and 100000. The mode of the oscilloscope is controlled by the command -m. By 

default, the oscilloscope is set to free run mode. In this mode the oscilloscope will display the 

wave naturally as it enters the program.  In order to achieve a more stable waveform the 

oscilloscope can be set to trigger mode. When in trigger mode more command options become 

available to control the waveform. The first of which being the control over the trigger slope 

using -s. The slope is set to positive (pos), forcing the wave to start on a rising edge, by default, 

but can be set to negative (neg), forcing the wave to start on a falling edge. The next command 

that opens when in trigger mode is -t. This command allows a trigger level to be set. The trigger 

level default is 2500 (2.5V) but can be set to anywhere between 0 (0V) and 5000 (5V) in 

increments of 100 (.1V). The trigger level tells the oscilloscope what value the waveform needs 

to cross, either positive or negative depending on the trigger slop setting, in order to trigger the 

waveform drawing. The final command, -c, informs the oscilloscope which waveform the 

drawing will trigger on. By default, the waveform will trigger on channel 1, but can also be set 

to channel 2. When the oscilloscope is running with the parameters that have been configured 

or left to the default value two waveforms will appear on the screen. These waveforms can be 

changed while the program is running through the waveform generator that is supplying them. 

The waveforms can also be adjusted up and down on the screen using two potentiometers, one 

for each waveform. In addition to the waveforms, the oscilloscope will also display a reference 

grid, scales, and trigger parameters.  

The system layout involves various components outlined in the block diagram above. A 

PSoC receives two waves from a wave generator. These waves are converted from analog to 

digital and then passed to the Raspberry Pi through a bulk USB transfer. The PSoC-5 also 

receives the input from two potentiometers. Again, this data is converted from analog do 

digital. However, this data is relayed to the Raspberry Pi through I2C. The Raspberry Pi allows 

for the user to configure various setting of the oscilloscope. Once those setting are adjusted, 

and the program is run, the Raspberry Pi converts the data to coordinates, based on the setting 

given before the program is ran, to be displayed on the VGA screen.  Data is constantly being 

loaded from the waveform generator through the PSoC-5 to the Raspberry Pi, thus the 

Raspberry Pi is also constantly resetting the coordinates for the VGA display and redrawing the 

finalized waveform.  

The hardware design was vital for this project. A PSoC-5 will be used to receive two 

channels of analog information from the Analog Discovery 2 that is located at each lab station 

and convert that information to digital data. This is done through two separate SAR ADCs. The 

digital data from the ADCs is stored within two separate ping pong buffers (four totals between 



both waves) with the use of two DMAs (one for each wave). The DMAs are set to use two TDs in 

a loop in order to take full advantage of the ping pong buffers. The data within one ping pong 

buffer will be sent to the Raspberry Pi, through USB bulk transfer, while the other is filling up. 

The roles of these buffers are controlled by an interrupt generated at the end of each 64 byte 

DMA transfer. The Raspberry Pi will then analyze that data and display it to a monitor. Data is 

also sent to the Raspberry Pi from the PSoC-5 through I2C. The I2C transfer is responsible for 

transmitting the data given by the potentiometers. This data also needs to travel through an 

ADC. However, unlike the waves, two potentiometers are converted with the use of one Sigma 

Delta ADC. This is accomplished by only passing the data from one potentiometer to the Sigma 

Delta ADC at a time. This control is provided using one 2-1 MUX. I2C is also allows for the 

Raspberry Pi to send commands to the PSoC-5. The Raspberry Pi can stop the sampled data to 

be passed from the PSoC-5 to the Raspberry Pi. In order to ensure the PSoC-5 met and did not 

exceed the power requirements of the Raspberry Pi during the I2C transfers the rail connecting 

the PSoC-5 to the Raspberry Pi needed to be isolated from the 5V power flowing into the 

Raspberry Pi from the USB. In order to accomplish this the R15 resistor was removed from the 

PSoC-5 board. The 3.3V power from the Raspberry Pi was then connected to the VDD input on 

that isolated rail. The ground on the Raspberry Pi was connected to the ground on this rail as 

well. In addition to this, the I2C pins from the PSoC-5 to the Raspberry Pi were set to and 

configured to be resistive pull up. Thus, the PSoC-5 would not exceed the 3.3V power limit of 

the Raspberry Pi. The exact layout of this can be seen in the hardware schematic. 

 The goal for the software in the oscilloscope program was to write fast, simple, well 

formatted and commented code. I accomplished fast code by ensuring only necessary code was 

implemented and running. This includes breaking the program into as small of pieces as 

possible so that no excess commands are ran. The code that was implemented and running was 

made as simple and linear as possible. This allowed all time constraints to be met and for the 

frequencies of the various components to be set to the maximum values outlined in the lab 

manual. The code was similarly formatted across all devices and commented extensively in 

order to ensure ease of understanding. The final goal of the code was to ensure that errors 

were checked in all the appropriate places. I did my best to account for as many as I could think 

of. 

 The oscilloscope has a simple communication protocol. Waveform data is passed into a 

64 byte array within the PSoC. Once this array is full is it passed to the Raspberry Pi using a 64 

byte USB bulk transfer. Because there are two waveforms, and two ping pong buffers two 

different endpoints are used when transferring the data between the two devices. The ping 

pong buffers are set up so that while one array is filling up the other is transferring. This I 

handled within the interrupt of the DMA. In order to combat the two endpoints mixing data 

only one USB bulk transfer takes place at a time. This is also handled within the interrupt of a 

DMA. The data being received by the raspberry Pi is stored in a 64 byte array. Each waveform 

has their own 64 byte array. This data is then dealt with by the Raspberry Pi to display the 

correct waveform on the VGA display.  



 For I2C data is taken from a Sigma Delta ADC and stored in one byte of a two byte array. 

The MUX channel is then switched to the next potentiometer where the other byte of data is 

stored in the next byte of the two byte array. This data is then transmitted through the I2C to 

the raspberry pi. This data is stored in two separate variables and used to move the waveforms 

up and down individually.  

  For the PSoC the program flows as follows. All variables are initialized, and all 

components are set up and started. The main for loop is then entered. If a command was 

received through I2C it stores that value in a buffer and clears the status. The program then 

checks if this value was set to 2. If it was then no data will be transferred to the Raspberry Pi 

and it will start at the top of the for loop. Otherwise it continues through the program as 

normal. If it is the first USB bulk transfers turn to send data then it will wait for the buffer to be 

empty, check which ping pong buffer to send and complete the bulk transfer. If it is the second 

USB bulk transfers turn it follows the same steps but with the other two ping pong buffers. 

Once the transfers are finished the PSoC enters the I2C protocol. The MUX channel is set to 1. 

The potentiometer value is then read and passes through boundary checking. The MUX channel 

is then changed to two. A small delay occurs to give the mux time to change channels. The 

potentiometer value is then read and passes through boundary checking. These values are 

placed in a buffer and sent over I2C to the Raspberry Pi. At some point the DMA will generate 

an interrupt and switch the roles of the two buffers. 

 For the Raspberry Pi the program flows as follows. All libraries and structs are initialized. 

Then modular portions of the code are initialized and set up. Then the main loop occurs. 

Variables are set up and initialized to their default value. Command arguments are then dealt 

with. The terminal is then saved, and user input is enabled. I2C is then set up followed by USB. 

The main while loop is entered. The VGA screen is started. A value is written to the PSoC over 

I2C. The potentiometer data is read. The data is received from the USB bulk transfers and 

stored in a larger data array. If the mode is set to free, then process the waves and dials them in 

free mode. Otherwise we are in trigger mode. The code then displays checks what channel and 

what trigger slope is detected. The correct set of wave data is then processed and displayed on 

the VGA screen. Various counters are reset, and the screen is ended. The while loop is then 

reran.  

  Errors were dealt with whenever necessary. This included invalid command 

arguments, invalid bulk transfers, and invalid I2C or USB setups. 

I tested this design in as small of chunks as I could in order to ensure that each change, I 

made along the way was current. After each implementation of each feature I would test all 

previously implemented features as well to ensure that I had not accidentally messed one of 

those up. Once the design was competed in its entirety I tested as many end cases as I could 

think of. This brought some issues t my attention. In order to solve these, I once again would 

change and test small chunks at a time. Retesting old portions as well. Once I believed to fix all 

the issues, I tested edge cases again. If I found more issues, I would repeat that process. 



I did not encounter any specific difficulties with this portion of the lab. I was able to use 

incremental testing to quickly debug any problems that I had very quickly. This led for a quick 

implementation of the oscilloscope. I wish I could have said the same for the logic analyzer. 

 The biggest way in which I would like to improve this design is to allow it to be 

configurable while the program is running. I find it very slow and inconvenient to have to exit 

the program in order to reconfigure the oscilloscope setting. Especially because the waveform 

can be adjusted while the program is running.  

Part 2: Logic Analyzer 

This logic analyzer simultaneously samples either eight, four or two different channels. 

The data for these channels is an eight bit binary counter. Each channel is responsible for the 

displaying of one bit in the channel. The logic analyzer also scans a file that contains one logic 

expressions. This logic expression is used to decide when the waveform will begin its drawing 

on the screen. The drawing can either happen when the logic expression goes from false to 

true, positive, or true to false, negative. In addition to triggering the waveform the amount of 

data the waveform displays on the window is also configurable. As is the sample frequency and 

x scale. The analyzer will also have a cursor. This cursor can be moved left and right using one of 

the two potentiometers in the system. The other potentiometer moves all the waves left or 

right.  
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The features of the logic analyzer are as follows. This logic analyzer is designed to be 

configurable in order to analyze a variety of different logic commands.  The first example of this 

configurability can be seen through the channel controls. By default, the logic analyzer captures 

and displays data from 8 channels, labeled A through H, simultaneously. However, using the 

command -n in the command line the number of channels can be set to 4 or 2 as well. In 

addition to the number of channels the system displays, the program also allows for the 

memory depth of the waves to be configured using the command -m. By default, this value is 

5000, however, the depth can range anywhere from 5000 to 50000 in increments of 5000. This 

configurability allows for the user to determine hoe much data they want to be taken and 

displayed at once. The rate at which this data is sampled can be configured using the command 

-f. The four frequency options provided by this program are 1, 10, 50, and 100 kHz, with the 

default being 10 kHz. The last command that can configure the wave is -x. This command allows 

for the x scale to be changed from its default value of 1000 (1ms/ division) to either 10, 100, 

500, 1000, 2000, 5000 or 50000. The trigger for the logic analyzer is also configurable. The 

command -t allows for a logic expression to be read in from an external file. This expression 

determines the trigger point for the wave. The direction in which the wave will trigger, positive 

for false to true or negative from true to false is set using the -d command. The logic analyzer 

will also have a cursor. This cursor can be moved left and right using one of the two 

potentiometers in the system. The other potentiometer moves all the waves left or right. In 

addition to this, the logic analyzer will also display a reference grid, scales, and trigger 

parameters. 

The system layout involves various components outlined in the block diagram above. A 

PSoC receives the data from an 8-bit binary counter, one wire is responsible for each bit on the 

counter. These bits are stored in a status register and stored within two ping pong buffers using 

a DMA. The data is passed to the Raspberry Pi through a USB bulk transfer. The PSoC-5 also 

receives the input from two potentiometers. This data is converted from analog to digital. 

However, this data is relayed to the Raspberry Pi through I2C. The Raspberry Pi allows for the 

user to configure various setting of the oscilloscope. Once those setting are adjusted, and the 

program is run, the Raspberry Pi converts the data to coordinates, based on the setting given 

before the program is ran, to be displayed on the VGA screen.  Data is constantly being loaded 

from the counter through the PSoC-5 to the Raspberry Pi, thus the Raspberry Pi is also 

constantly resetting the coordinates for the VGA display and redrawing the finalized waveform. 

 The hardware design is integral in the success of the logic analyzer. A PSoC 5 will be 

used to receive eight channels of digital information from the Analog Discovery 2 that is located 

at each lab station and convert that information to digital data. This data is coming from an 

eight bit binary counter within the Analog discovery 2. The data from these channels is stored in 

an eight bit status register. One DMA then moves this data from the control register to a set of 

ping pong buffers. The DMA is set to use two TDs in a loop in order to take full advantage of the 

ping pong buffers. The data within one ping pong buffer will be sent to the Raspberry Pi, 

through USB bulk transfer, while the other is filling up. The roles of these buffers are controlled 



by an interrupt generated at the end of each 64 byte DMA transfer. The Raspberry Pi will then 

analyze that data and display it to a monitor. Data is also sent to the Raspberry Pi from the 

PSoC-5 through I2C. The I2C transfer is responsible for transmitting the data given by the 

potentiometers. Unlike the counter data, the potentiometer data must travel through a Sigma 

Delta ADC. The two potentiometers are converted with the use of one Sigma Delta ADC, just as 

they were in the oscilloscope portion of this project. This is accomplished by only passing the 

data from one potentiometer to the Sigma Delta ADC at a time. This control is provided using 

one 2-1 MUX. I2C is also allows for the Raspberry Pi to send commands to the PSoC-5. The 

Raspberry Pi select the frequency at which the 8 bit binary counter is sampled. This is 

accomplished using a 4 to 1 MUX. The sampling frequency is set at the very beginning of the 

program. Once this frequency is set the PSoC will continually send data to the Raspberry Pi. In 

order to ensure the PSoC-5 met and did not exceed the power requirements of the Raspberry Pi 

during the I2C transfers the rail connecting the PSoC-5 to the Raspberry Pi needed to be 

isolated from the 5V power flowing into the Raspberry Pi from the USB. In order to accomplish 

this the R15 resistor was removed from the PSoC-5 board. The 3.3V power from the Raspberry 

Pi was then connected to the VDD input on that isolated rail. The ground on the Raspberry Pi 

was connected to the ground on this rail as well. In addition to this, the I2C pins from the PSoC-

5 to the Raspberry Pi were set to and configured to be resistive pull up. Thus, the PSoC-5 would 

not exceed the 3.3V power limit of the Raspberry Pi. The exact layout of this can be seen in the 

hardware schematic. 

 The logic analyzer has the same basic software goals as the oscilloscope. The software in 

this program was to write fast, simple, well formatted and commented code. I accomplished 

fast code by ensuring only necessary code was implemented and running. This includes 

breaking the program into as small of pieces as possible so that no excess commands are ran. 

The code that was implemented and running was made as simple and linear as possible. This 

allowed all time constraints to be met and for the frequencies of the various components to be 

set to the maximum values outlined in the lab manual. The code was similarly formatted across 

all devices and commented extensively in order to ensure ease of understanding. The final goal 

of the code was to ensure that errors were checked in all the appropriate places. I did my best 

to account for as many as I could think of.  

 The logic analyzer has an even simpler communication protocol than the oscilloscope 

despite having four times as many channels. 8 bit counter data is passed into a8 bit status 

register. A DMA then transfers this data to a 64 byte ping pong buffer. Once this array is full is it 

passed to the Raspberry Pi using a 64 byte USB bulk transfer. The ping pong buffer is set up so 

that while one array is filling up the other is transferring. This I handled within the interrupt of 

the DMA. The data being received by the raspberry Pi is stored in a 64 byte array. This array is 

then transferred to a larger data array that will be used to display the waves for each channel.  

 For I2C data is taken from a Sigma Delta ADC and stored in one byte of a two byte array. 

The MUX channel is then switched to the next potentiometer where the other byte of data is 



stored in the next byte of the two byte array. This data is then transmitted through the I2C to 

the raspberry pi. This data is stored in two separate variables and used to move the waveforms 

up and down individually.  

  For the PSoC the program flows as follows. All variables are initialized, and all 

components are set up and started. The main for loop is then entered. If a command was 

received through I2C it stores that value in a buffer and clears the status. Depending on the 

value that was given to the PSoC a different MUX channel will be selected. This channel controls 

the sampling rate. Next the PSoC takes care of the USB Bulk transfer. The program will wait for 

the buffer to be empty, check which ping pong buffer to send and complete the bulk transfer. 

Once the transfer is finished the PSoC enters the I2C protocol. The MUX channel is set to 1. The 

potentiometer value is then read and passes through boundary checking. The MUX channel is 

then changed to two. A small delay occurs to give the mux time to change channels. The 

potentiometer value is then read and passes through boundary checking. These values are 

placed in a buffer and sent over I2C to the Raspberry Pi. At some point the DMA will generate 

an interrupt and switch the roles of the two buffers. 

For the Raspberry Pi the program flows as follows. All libraries and structs are initialized. 

Then modular portions of the code are initialized and set up. Then the main loop occurs. 

Variables are set up and initialized to their default value. Command arguments are then dealt 

with. The terminal is then saved, and user input is enabled. I2C is then set up followed by USB. 

The main while loop is entered. The VGA screen is started. A value is written to the PSoC over 

I2C. The potentiometer data is read. The data is received from the USB bulk transfers and 

stored in a larger data array. Data is then bitwise anded with the appropriate value and stored 

in eight separate arrays. Thus, allowing for the 8 different bits of data to be displayed on eight 

separate channels. The program then checks how many channels should be displayed. It 

processes and prints out only the necessary amount in order to be efficient. The cursor is then 

printed as well as the target indicator. Various counter variables are reset to zero and the sreen 

transmission is ended. The loop is then reran.  

  Error checking was done when deemed appropriate. This included invalid 

command arguments, invalid bulk transfers, invalid I2C or USB setups, invalid file names and 

invalid logic equations. 

My testing method for the logic analyzer was the same for the oscilloscope. However, 

here it is again. I tested this design in as small of chunks as I could in order to ensure that each 

change, I made along the way was current. After each implementation of each feature I would 

test all previously implemented features as well to ensure that I had not accidentally messed 

one of those up. Once the design was competed in its entirety I tested as many end cases as I 

could think of. This brought some issues to my attention. In order to solve these, I once again 

would change and test small chunks at a time. Retesting old portions as well. Once I believed to 

fix all the issues, I tested edge cases again. If I found more issues, I would repeat that process. 



  Just as in the oscilloscope I did not have any issues with this lab. Until I tried to 

implement the data being controlled by the logic expression to generate a trigger. I could not, 

and still have not figured out how to implement this logic. I have tried many different iterations 

of the program and have made no progress. I have tried to step through the program, test 

portions of the algorithm separately, and even creating a separate program just to handle this 

portion of the project, but I wasn’t able to come up with a working solution before my turn in 

date. These iterations cannot be seen in the current submission because it would qualify as 

“dead code”. This is something I had been marked down on in past lab submissions and didn’t 

want to make the same mistake twice. Now that school is over, I plan on diving back into this 

project in order to implement this algorithm.  

First and foremost, I would like to improve my design by finishing the implementation of 

my current design. However, once that is finished there are three big design changes I’d like to 

implement. I would like for the program to be able to handle multiple logic expressions and 

while the program is running be able to switch between the different expressions. After this I 

would like for the display to show the number that is being shown by the waves at the trigger 

point. I believe this could be a valuable piece of information. Lastly, I would like for the design 

to be configurable while the program is running. I would like this for the same reason sated 

when evaluating the oscilloscope, I find it very slow and inconvenient to have to exit the 

program in order to reconfigure the logic analyzer setting. Especially because the data can be 

adjusted while the program is running.  

All in all, this project was a fantastic mix of both old and new material. This allowed for a 

challenging yet informative lab. I also found this lab to be extremely practical and interesting 

which I appreciated. I learned some valuable lessons, but the most important was the value of 

incremental testing. Incremental testing streamlined my development process and saved me a 

great deal of time. It wasn’t for all these things the 60+ hours spent on this lab would not have 

been worth it. I plan on revisiting this project on my own in order to implement the 

improvements I discussed throughout the lab report. With that being said, I am happy with the 

results I was able to produce for the project. I was able to complete the oscilloscope perfectly 

and almost complete the implementation of logic analyzer.  
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